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SUMMARY
A brief summary of a unified approach to the transient response
of structures obtained by the method of characteristics is presented.
Comments are made on the types of governing partial differential
equations, the stability in numerical calculation, the extrapolation
technique, and the relation between continuous and discrete systems.
The merits and limitations of the method of charactéristics, as compared

to other methods, are also discussed.




I. INTRODUCTION

With the availability of high speed digital computers, several
numerical methods are being developed for the study of the transient
response of structures. Among these are the finite-difference method,
the finite-element method and the method of characteristics. In this
paper, recent developments of the method of characteristics are summarized.
Comparisons between the method of characteristics and the other methods
are presented. A special emphasis is placed on the importance of totally
hyperbolic differential equations for solving transient structural problems.
It is shown that even though non-hyperbolic equations are sometimes used
by structural engineers for vibration and steady state dynamic problems,
they are not applicable for transient problems. The difference between
a continuous structure and its equivalent discrete system is demonstrated.
The numerical stability and the technique of extrapolation are also

discussed.




II. METHOD OF CHARACTERISTICS

Motions of many types of structures that are governed by equations
involving only one space variable éan be analyzed by the unified approach
of the method of characteristics introduced in Ref. 1. A Timoshenko beam
is one typical structure amenable to this method of analysis. According
to the theory of elasticity, a beam is a three-dimensional structure; its
exact stress and dispiacement distributions are vefy difficglt to obtain.
However, if the approximate assumption fhat a plane cross-section remains
plane is made, the governing equations simplify into two second order
partial differential equations with the deflection and rotation as the
dependent variables, and the axial coordinate and time as the independent
variables. For a constant cross-section béam, these equations are as

follows (Ref. 2).
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where prime and dots represent spacial and time derivatives, respectively;
1/2 ) 1/2 .

cy = (E/p) = bar velocity; cg = k(G/p) = shear velocity; a and b are

constants depending on the beam properties. Equations (1) are totally

hyperbolic. Therefore, the first of (1) may be transformed into a new

coordinate system Oy 81, with the co-tangent of the angle between the

a,-axis and x-axis equal to c¢

1 (Fig. 1). 1In the a,, B, coordinates, the
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first of (1) becomes

30 _ . 3y : o _
5a;  “bao; T @Y TPV G =0

. (2)
3y, A ' x_
28, T Sbas "% @Y TPV e =0




If &, V', y and y' are considered as the dependent variables, then
the first of (2) contains derivatives with respect to o; only, while the
second of (2) contains derivatives with respect to B, only. Thus, along
o; and B, the original second order partial differential equations become
first order "ordinary" differential equations, a simplification which is
very convenient for numerical integration.

Similarly, the second of (1) may be transformed into
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where o are coordinates shown in Figure 1. Equations (2) and (3)

22 T2

can be changed readily into finite-difference form. These finite difference

equations, together with the equations,

dy = y' dx + ¢ dt

(4)

dy = y' dx +y dt
constitute a system of six equations for the six variables &, V', v, &,
y', and y. If the values of these six variables at points 2, 3 and 4 of
Figure 1 are known, their values at point 1 may be obtained from these six
equations. (The values at points 5 and 6 may be calculated by interpolation).
It can also be shown that discontinuities in the derivatives of ¥ and y can
only exist across lines parallel to the characteristic coordinates a,, a,,
B, and 82.

For the analysis of any other types of structures whose governing

equations involve only one space variable the unified method of characteris-

tics of Ref. 1 is applicable. These include different types of bars,




sheets, plates, shells and springs. Two recent articles, one concerning
sandwich spherical caps (Ref. 3), and the other concerning coupled
bending-torsion of beams (Ref. 4), contain equations of the type treated
in Ref. 1. 1In cases where two space variables are involved, modal
analysis may be utilized to remove one of the space coordinates, while

the remaining portion of the equations in terms of the other space variable
can still be treated by the method of characteristics. An example of this
case is a cylindrical shell subjected to a non-symmetrical axial impact.
The displacement variables may be expanded into Fourier components in the
circumferential coordinate; the resulting governing equations contain only
one spatial independent variable (the axial coordinate) and can be treated
by the method of Ref. 1.

The Timoshenko beam involves two governing equations of the second
order. In other problems, the number of governing second order equations
can be four, five, and even six. While the characteristic directions,
the governing equations in the characteristic coordinates, as well as the
equations governing the propagation of discontinuities are derived in
Ref. 1 for any number of equations, the scheme for numerical integration
has been developed for those cases containing only two distinct wave
velocities. The symmetrical response of shells involves three equations,
but only two distinct wave velocities, and thus may be calculated by the
present scheme. Numerical procedures for problems involving three distinct
wave velocities are currently being developed.

Since the method of characteristics is essentially numerical, it can
treat equations of variable coefficients, or structures of variable mass
and stiffness distributions. The wave propagation in a nonhomogeneous

structure is solved by this method in Ref. 5.

"
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Another advantage of using the unified equations of Ref. 1 is that
very often two different structural problems have the same governing
equations. For instance, the equations governing a correctly formulated
membrane theory for cylindrical shells, Ref. 6, have the same form as the
Timoshenko beam equations, (1). Therefore, all solutions for the Timoshenko
beam are also solutions to the membrane shell.

By combining the two second order equations of (1), a fourth order

equation may be obtained as follows, (Ref. 2),
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where the fact that a = -b has been utilized. Alternmatively, (1) may

be decomposed into four first order equations (Ref. 7). Comparison of

these three systems (one fourth order equation, two second order equations,
and four first order equations) shows that the representation with two
second order equations has some distinguished advantages. The wave veloci-
ties associated with each of the variables appear explicitly in the second
order equations. The factors governing the propagation of discontinuities
also appear explicitly in (1). 1In using either the first order or the fourth
order equations, the hyperbolicity of the system is not immediately apparent.
The same comments can also be applied to equations governing other types

of structures. For instance, the cylindrical shell theory including

rotary inertia and shear effects yields three second order‘equations, as

follows (Ref. 6),
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From this set of equations, it is immediately evident that the system is
totally hyperbolic, and with two distinct wave velocities cp and g
Combining (6) into one sixth order equation, or decomposing it into six

first order equations would conceal these features and would make the

application of the method of characteristics more difficult.

III. HYPERBOLIC DIFFERENTIAL EQUATIONS

Another point of interest is the importance of the hyperbolic
nature of the governing equations in transient structural problems.
From a structural point of view, it takes a finite, though small, time
for any disturbance to transmit through a structure. This observation
is in agreement with the theory of elasticity where all disturbances, or
excitations, are propagated at either one of the two wave velocities,
the dilatational velocity or the equivoluminal velocity (Ref. 8). 1In
deriving simple practical equations for structures, it is customary to
make approximating assumptions, or to neglect certain effects of small
magnitude. It must be kept in mind that for transient response purposes,
the derived governing equations must be totally hyperbolic; if not, their
transient response is either meaningless or not obtainable. Take the
case of Timoshenko beam equations as an example. Equations (1) are
totally hyperbolic; any suddenly applied disturbance in ¥, or in moment,

propagates at the bar velocity, ¢,» while a disturbance in y, or in shear,

“ g ’
. .
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propagates at the shear velocity, g The contribution of rotary inertia
appears in these equations as the term J. If this rotary inertia term is
neglected, the first of (1) is no longer hyperbolic, but parabolic. Any
disturbance in ¢, or in moment, is immediately felt at infinity, as

evidenced by the fact that setting c. equal to infinity is equivalent to

b
dropping the @ term. In the classical Bernoulli-Euler beam theory, where
both rotary inertia and shear effects are neglected, the governing

equation

" pA ..

is not hyperbolic, but totally parabolic; therefore, cannot be used for
transient problems. (Applying the method of characteristics to (7), we
obtain four degenerated characteristics, all in the direction dt = 0).

In vibration and harmonic wave studies, (7) has often been used. 1In

these cases, "steady state,"

rather than transient, solutions are involved;
therefore, (7) can still produce "meaningful," even though less accurate,
results. As mentioned before, the Timoshenko equations are also approxi-
mate, and have their limitations. However, these approximations do not
alter the hyperbolic nature of the exact elasticity equations. It is well
known that the natural frequencies of beams according to Timoshenko theory
are more accurate than those according to Bernoulli-Euler theory (Refs. 9,
10). Consequently, the Timoshenko equations for a beam are essential in
transient analysis; they are also the most suitable for vibration and
steady state problems for their accuracy.

The same situation exists in the membrane theory for shells. 1In

solving transient shell problems, many investigators merely add inertia

terms to a set of existing static membrane equations, without checking the




nature of the resulting equations, (Ref. 11). 1In the pure static case,
the shear effect in a membrane shell may be neglected without any harm.
However, in the corresponding dynamic case, if shear is not included, the
equations are again not totally hyperbolic. A set of correctly formulated
membrane equations for cylindrical shells may be obtained from (6) by

dropping the second equation, and the ¥ term in the third, which results in

w' - Elj w = By u' +oz;3 w
s (8)
P

This is a set of totally hyperbolic equations. Neglecting the shear
effect, as is commonly done, is equivalent to dropping the w'" term.
Regardless of how small and neglegible the shear effect is in the static
case, it must be retained in the dynamic equations. Furthermore, the
form of (8) is already simple} dropping of w'" term seems to have no
justification from simplicity point of view.

As mentioned before, the governing equations of a Timoshenko beam,
(1), are the same as the correctly formulated membrane equations, (8)
except for the difference in coefficients. Typical results calculated
by the method of characteristics for a cylindrical shell subjected to
an end step axial velocity are shown in Figure 2. The shear stress
distributioh from both the general bending theory and the simplified

membrane theory are given.



IV. STABILITY OF NUMERICAL METHODS

Since the method of characteristics is essentially a numerical
method, the question of stability is of extreme importance. In problems
involving one space variable, such as those treated in Refs. 1 and 12,
the numerical scheme adopted is inherently stable. For two space variable
transient problems, numerical schemes are not always stable (Ref. 13).
The question of stability must be established for each problem separately,
and is usually very difficult. This section is intended to give only a
brief introduction to stability and a demonstration of its importance.

Let u(x,t) be the exact solution of a transient problem, u; be the
numerical solution of the same problem at time t = nAt and position
x = jAx where At and Ax are the mesh sizes used in the numerical calculation.
Then the error, e, is given by

e = u(x,t) - u? (9

Stability may be defined in two different ways, (Ref. 14). The first
states that a numerical scheme is stable if e is bounded as n approaches
infinity for fixed Ax and At. The second definition stipulates that a
numerical scheme is stable if e is bounded as At and Ax approach zero,
and n approaches infinity, for a fixed value of t = nAt. 1In either case,
it is necessary to observe a ''stability criterion" in order to prevent
errors from amplifying so much as to make the calculations meaningless.
The "stability criterion' usually amounts to a restriction on the permissible
size of At in terms of the sizes of spacial increments. Lack of adherence
to the criterion produces symptoms of instability within a small number of

cycles.
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In one space variable problems, the method of characteristics is stable
because it always adheres to the Courant-Friedrich-Lewy stability criterion

At <

Ax 1 (10)

where ¢ is the largest of the wave velocities. For two space variable problems,
exact form of necessary and sufficient stability criteria is hard to
establish. The following example demonstrates the occurence and symptom
of instability in a specific numerical case.

The problem treated is a step stress input applied at the interior
surface of a spherical cavity in an elastic medium. In terms of the
scalar displacement potential, the governing equation is

2 - 27§ =0 (11)

where ¢ is the dilatational velocity. In order to develop the two space
variable method of characteristics, this spherically symmetrical problem
is treated purposely by cylindrical coordinates r and z. At a certain
time after the input load is applied, the exact solution by Sharpe, Ref. 15,
is taken as the initial value for our two-dimensional initial value problem.
Since only the dilatational wave is involved, only one characteristic cone
extends from each point. Four bicharacteristics are chosen, and the
corresponding characteristic equations are written. By following a numerical
scheme similar to that used by Butler (Ref. 16), the displacement and stress
at points on succeeding constant time planes are calculated. In all the
calculations equal mesh sizes are used for Ar and Az (Ar = Az) but the ratio
At/Ar is varied. Figure 3 shows a plot of the cylindrical radial component
of displacement at a point r = z - 1.31, as a function of time. For a
ratio of At/Ar = 0.6 the calculation is stable, producing very smooth
accurate results. For a ratio At/Ar = 0.8, the calculation is unstable;
after approximately fifteen time steps, the value from each successive

calculation oscillates violently, and is apparently meaningless.

~-10-



V. ERROR ANALYSIS AND EXTRAPOLATION
According to the definition of stability, adherence to the stability
criteria ensures the convergence of the numerical solution to the true
solution, as At and Ax approach zero. For practical purposes, the rate of
convergence is also of great interest. This rate depends primarily on the
truncation error, which is the error introduced by approximating the
differentials by finite differences. If the type of truncation error of
a given problem is known, an extrapolation technique can be employed to
achieve a high degree of accuracy with a small amount of calculation. The
error of a numerical calculation, as defined in (9), is said to be of
h?-type if it can be expressed in the form
e=u-ul =4+ gpnt 4,0 4+t e L (12)
where h is the mesh size (At, or Ax), and the ¢i's are quantities that
are independent of the mesh size and are dependent only upon the x,t-
location of the point at which the function of u; is being evaluated.
If two values, u, and u,, at a given point are calculated (u1 corresponding
to a mesh size h; and u, corresponding to hz) then we may write (12) twice

in truncated form,

2
u u, + ¢1h1

(13)

u u, + ¢1h%

Elimination of ¢1 from these equations gives the extrapolated value of u,
u = (hZu; - h3u,)/(h3 - h?) (14)

This formula is called the hz—type two point extrapolation. Similarly, if

calculations with three different mesh sizes h;, h,, and h; are performed,

a three-point h?-type extrapolation formula may be written from the three

equations obtained from (12) by truncating terms containing h® and higher

order.

-11-




The principle of extrapolation can be best demonstrated by graphical
means. Let us define the percent error as the difference between the true
value and the calculated value, divided by the true value. The three points
on Figure 4(a) represent the percent error for three calculations with mesh
sizes h = 1, 3/4, and 1/2 respectively. The intersection of the straight
line joining the 1, and 3/4 error points, with the vertical axis, gives the
two point extrapolated value of (14). Similarly, a quadratic curve passing
through all three points gives the three-point h2- type extrapolation.

If the error is of h-type, or

e=V h+vn?+phd+ ..., +yht (15)
1 2 3 it T
similar h-type extrapolation formulas may be devised. Obviously, for

a given problem, the error cannot be of both h-~ and h’-types. The errors

given in Figure 4 are close to h2—type; therefore, all h?-~type extrapolations

improve the results (Figure 4a), but h-type extrapolations do not (Figure 4b).

As an illustrative example, we shall consider again the spherical
dilatational wave problem solved exactly by Sharpe (Ref. 15). The same
problem is now solved by the numerical method of characteristics of
reference 1, with three different mesh sizes corresponding to h = 1, 1/2,
and 1/4 respectively. TFifteen decimal digits were used both for the
evaluation of Sharpe's exact solution, and for the calculations by the
method of characteristics. The curves in Figure 5 labeled h = 1, h = 1/2,
and h = 1/4, are the percent error in radial stress, at 3.2 usec. after
loading, for the three mesh sizes. The curve hz(l, 1/2) is the extrapolated
value, according to hz—type extrapolation, from those values with h = 1 and
1/2; the curve h?(l, 1/2, 1/4) is the absolute value of the relative error
from the three point extrapolation., As can be seen, the h?(l, 1/2, 1/4)

values are extremely accurate. To achieve the same degree of accuracy

-12-
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without extrapolation, a much smaller mesh size would have to be used, which

would have consumed much more computing time.

Vi. CONTINUOUS VS DISCRETE SYSTEMS

From the structural mechanics point of view, all structural materials
are considered to be continuous; although actual materials, from the micro-
scopic point of view, consist of discrete particles, such as molecules or
crystals. Based on the continuous model of material, differential or
integral equations are derived. Since closed form exact solutions of
these equations are usually difficult to obtain, especially when the
structure is complicated, numerical methods must be used. In applying
these numerical methods, the continuous structures are again decomposed
into discrete systems. In the finite-element method, the structure is
first divided into a finite number of discrete elements; equations govern-
ing these elements are then derived and solved. 1In the finite-difference
method, the differential equations for the structures are first derived,
the equations are next changed into algebraic finite-difference equations.
A finite number of points is then chosen along the structures, and the
finite-difference equations corresponding to these points are solved. 1In
the method of characteristics, the partial differential equations are first
transformed into ordinary differential equations in the characteristic
coordinates. Next they are changed into finite-difference form, and a
finite number of points are then chosen and the finite-difference equations
solved.

It is interesting to note that the structural engineer may treat the
structure as discrete or continuous system at his convenience. Care must

be taken, however, to insure that the behavior of the corresponding system

-13~




is compatible with the original system. The following example demonstrates
a case where the continuous system and the corresponding discrete systems
have drastically different behaviors.

The example to be considered is the longitudinal wave in a simple bar,
as shown in Figure 6(a). The governing equation for the continuous bar is

-ty G o= 0 (16)

where ¢ = YE/p is the bar velocity. This is a simple wave equation; all
disturbances propagate at the velocity c with unchanged amplitude and shape.

It is non-dispersive; if a sinusoidal solution

2n

u = sin N

x -c t 17
D ) (17)
is substituted into (16), it can be shown readily that Cp = ¢, or the phase
velocity, cp, is independent of the wave length, A.
Now, if we simulate the continuous bar by a mass-spring system, as
shown in Figure 6(a), the governing equation of the system is
Mu = k(u + u - 2u) 18
P ptl p-l P (18)
where up is the axial displacement of the pth mass particle, M is the mass
of the particle, k is the spring constant. Substituting the sinusoidal

solution

T
=gin— (x -c¢c t 19
u ( P > ) (19

into (18), and keeping in mind that xp = pd, we obtain

2 _ 4%k sin?(mad)
Cp M (mad)?

(20)

where a = 1/) is the wave number. From the relations M = pAd, and

k = EA/d, (20) becomes
s 2
2 o o2 8in (mad) (21)

o ° (rad)?

which indicates that the mass-spring system is dispersive; the phase

velocity cp is a function of wave length (or wave number). As can be seen

-14-




from Figure 6, which is plotted from (21), when the wave length is very

long as compared with d, the phase velocity cp approaches ¢ as a limit.

From this example we may conclude that in dividing a continuous system

into a discrete system, we must make sure that the ''representative length"

of the discrete element be much smaller than the wave length to be encountered

in the transient problem. (Another way of saying this is that the time
required for disturbances to travel from one element to another must be much
smaller than the time interval of interest in the transient problem). On
the other hand, when smoothing out microscopic particles into a continuum,
we must also make sure that the wave length is longer than the distances
between particles. Indeed, the study of crystal structures by X-ray is
based on the principle that the wavelength of X-rays is of the same order

of magnitude as the interatomic spacing in a solid, (Ref. 17).

VII. COMPARISON WITH OTHER METHODS

The mode superposition method is suitable for the transient analysis of
structures if the structure is not too complicated and if the loading is
smooth, not involving step-inputs. An example of this method is a simply
supported Timoshenko beam loaded at one end by a moment. Figure 7, which
is reproduced from Figures 5 and 6 of Ref. 7, shows the time history of
the moment at the center of the beam as calculated by two methods, an exact
method (Laplace transform), and a modal method with static plus six modes.
The results of the method of characteristics calculation also agree closely
with the exact solution. Figure 7(a) shows the response due to a step
moment input. As can be seen, the modal solution is not very accurate.
Figure 7(b) shows the response for a ramp moment input where the modal

solution is satisfactory.

-15-




The Laplace transform method is limited to very simple structures.
Closed form solutions are seldom obtainable because of inversion diffi-
culties. The Laplace transform method is very useful in producing exact
solutions for certain problems which can be used as a standard in
determining the accuracy of other approximate methods (Ref. 7).

The finite-difference method for one space variable problems is
versatile; it can be applied to long time response problems where
complicated discontinuities and wave reflections exist (Refs. 18, 19).

In applying the finite-difference method, an artificial viscosity must be
introduced to damp out spurious oscillations and to permit the numerical
calculation of a discontinuous surface. As a result, sharp wave fronts
cannot be maintained and the calculated stresses and velocities are not
very accurate. Finite-difference methods for two space variable problems
are currently being developed by many investigators (Ref. 20).

The finite-element method for static equilibrium problems is well
developed. For transient problems, many new developments are also being
made (Refs. 21, 22). The method is capable of handling more complicated
structures; its stability and convergence behaviors are probably more
difficult to establish.

The method of characteristics is suitable to treat almost all
problems with one space variable. It is accurate, stable, and has good
convergence. At the present, it cannot be used for two-dimensional
transient structural problems, unless used in conjunction with some other

methods.

-16-



VIII. CONCLUDING REMARKS

The discussion in this paper is limited to linear elastic structures.
The method of characteristics is currently being extended in order to solve
problems involving coupled second derivatives in the equations. Numerical
schemes for problems with more than three equations are also being
developed. Two space variable methods, as well as methods for plastic
and viscoelastic materials will also be studied.

The method of characteristics is most suitable for comparatively
simple structures. For very complicated structures, perhaps an approach
combining the method of characteristics with the finite-element method

may prove fruitful.

-17-
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Characteristic Coordinates

QBT

04 Jf\ - = MEMBRANE
SHEAR
STRESS 0*7‘447‘9", 7
% _o4 |
: 13 t
Fﬂgﬁa L~ T= EE{'=
-08
O 04 08 12 1.6
X/R
DISTANCE
Figure 2

Shear Stress Distributiom of a Cylindrical Shell
Under a Load of v/cp -], l' - l‘ =0 at x=0;

v = 1/3, h/R = 0.1, and k% « 0.87.




RADIAL DISPLACEMENT

72
— &L -06 (gTABLE) f‘
71 £t +
———= 15 =O.8(UNSTABLE)X\ |
\ | \
70 VARVES
/ \
69 — .\
\
68 / t
/ |
\
675 | 2 3 4
TIME
Figure 3

Stability of Numerical Methods - Calculated Time History

of Displacement in Cylindrical Radial Directiomn of a

Spherical Wave, by Two-Space Variable Method of Characteristics,
at r = z = 1.31, Ar = Az = 0.02.
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Extrapolation of a Typical Set of hz—type
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Percent Error in Calculated Radial Stress of a Spherical Dilatation

Wave, with Mesh Sizes 1, 1/2, and 1/4, and the Absolute Value of
the Extrapolated Errors.
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Figure 6

Dispersion of Longitudimal Waves in a Mase-Spring
System, Simulating a Coatinuous Bar
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Time History of Mement at the Center
of a Uniform Simply Supported Beam.
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